Инкрементальные энкодеры

Инкрементальные энкодеры: принцип работы


Инкрементальные энкодеры применяются на серводвигателях в качестве устройства обратной связи для определения положения и направления вращения вала. Кроме того контроллеры двигателей могут использовать данные от энкодеров для расчета скорости и ее контроля. Инкрементальный энкодер является критическим компонентом, который передает важные данные необходимые для автоматического управления различными системами движения от автономных транспортных средств до торговых автоматов.

Двухканальный инкрементальный энкодер на выходе имеет два сигнала, которые обычно обозначаются как канал А и канал В. Данные сигналы называются квадратурными, потому что между ними существует смещение фазы в 90 градусов (см. рис.1)

1en.jpg
Рис.1

Разработчики могут использовать эту разницу фаз для определения направления вращения. В случае вращения в одном направлении сигнал в канале А изменяется от низкого уровня к высокому раньше чем в канале В, то есть канал А ведет канал В. При вращении в противоположном направлении канал В ведет канал А. Направление вращения серводвигателя определяется при помощи датчиков установленных на валу двигателя (см. рис.2 ниже).

2en.jpg
Рис. 2 Использование сигналов каналов А и В для определения вращения

Сигналы каналов А и В также используются для определения положения ротора. При регистрации квадратурного сигнала выполняется подсчет переходов сигнала от низкого уровня к высокому и от высокого к низкому, в обоих каналах. Такой подсчет дает четыре отсчета для каждого цикла сигнала. Таким образом, по количеству отсчетов на оборот, можно определить положение вала с точностью большей, чем базовое разрешение энкодера, который определяет положение по количеству отсчетов на один оборот (которое иногда называют количеством линий на оборот - в случае оптического энкодера), см. рис. 3 ниже.

3en.jpg
Рис. 3

Трехканальный инкрементальный энкодер состоит из каналов А и В, и дополнительного опорного канала, обозначаемого как индекс. Индексный канал генерирует один отсчет на оборот при прохождении вала определенного положения. Импульс индексного канала может быть стробированным или не стробированным. Фронты не стробированного импульса индексного канала не совпадают с фронтами импульсов в каналах А и В. Фронты стробированного импульса индексного канала будут совпадать с высоким или низким уровнем в одном или обоих каналах А и В. Обычно используют стробированный канал индекс, который совпадает с сигналом в каналах А и В. См. рис.4

4en.jpg
Рис. 4. Временная диаграмма трехканального инкрементального энкодера с сравнением синхронизированного и не синхронизированного импульса в индексном канале.

Индексный сигнал обычно используется для определения центрального положения, исходного положения точки обнуления или нулевой отметки. Он часто используется в сочетании с некоторым типом датчика приближения, который обеспечивает определение приближения к начальному положению. Все три выхода энкодера: А, В и индекс могут быть как с несимметричными, так и с симметричными выходами. Несимметричный выход сравнивается с сигналом земля (GND) источника питания энкодера. Подобный энкодер требует только одного провода для каждого канала плюс два провода к источнику питания (показаны на рис. 5). Несимметричные выходы энкодера, как правило, TTL совместимы, для их подключения желательно использовать как можно более короткие проводники, чтобы минимизировать ухудшение сигнала и проблемы с электрическими помехами. Энкодер с одним несимметричным выходом может быть экономичным решением для ОЕМ производителей.

Выходы дифференциальной линии драйвера более невосприимчивы к электрическим помехам, чем сигналы несимметричных линий, потому дифференциальные линии могут быть большей длины. Эти выходы являются комплементарными сигнальными парами, когда сигнал имеет высокий уровень, а другой низкий, как это показано на рисунке 6. Каждый дифференциальный выход требует двух проводов; обычно используют витые пары для увеличения помехоустойчивости. Драйверы дифференциальной линии имеют низкий импеданс, что делает устойчивыми к помехам. Они должны быть подключены к высокоимпедансными дифференциальным приемникам для подавления синфазного шума. Комплементарные выходы обрабатываются приемниками дифференциальной линии, таким образом, чтобы требуемый сигнал мог быть восстановлен без шумов и искажений, как это показано на рис.7. Эти преимущества связаны с дополнительными затратами для схем дифференциальных драйверов линий и дополнительных сигнальных линий.

5en.jpg
Рис. 5. Схема подключения трехканального энкодера с несимметричным выходом

Выходы дайвера дифференциальных линий, как правило, более устойчивы в отношении электрических помех в сравнении с однопроводными линиями. Эти выходы являются комплементарными, потому, когда сигнал в одной линии высокого уровня, в другой линии он низкого уровня, как это показано на рис.6. Каждая дифференциальная пара состоит из двух проводов; обычно витые пары используются для повышения помехоустойчивости сигнальных линий. Дифференциальные линейные драйверы имеют низкий импеданс, что делает устойчивыми к помехам. Они должны быть подключены к высокоимпедансными дифференциальным приемникам для подавления синфазного шума. Комплементарные выходы обрабатываются приемником дифференциальной линии таким образом, чтобы необходимый сигнал мог быть восстановлен без шумов и искажений, как это показано на рис. 7. Такие преимущества увеличивают цену решения, в связи с высокой стоимостью дифференциальных линейных драйверов и дополнительных сигнальных линий.

6en.jpg
Рис.6. Временная диаграмма драйвера дифференциальной линии энкодера 

7en.jpg
Рис. 7. Обработка дифференциального сигнала линейным драйвером