Электрика станка
Двигатели и привод
Шаговый привод для управления станком с ЧПУ - купить по низкой цене в интернет-магазине Darxton.ru
Передачи и направляющие
Инструмент и оснастка
Как нас найти
Как нас найти
г. Воронеж, пр-т Труда, д. 48/6
(Станкостроительный завод)

Шаговые двигатели

Биполярные ШД
Биполярные ШД
Биполярные шаговые двигатели (2 обмотки, с 4 выводами) со стандартными фланцами NEMA - самый широко используемый вид ШД. Для биполярных ШД производится наибольшее количество драйверов. Подробно...
Название
Фланец
Момент
Ток, I
Инд-ость
Цена Кол-во
ST42-40 42 мм (NEMA 17) 0.32 Нм 1.2 А 2.4 мГн 956 руб. / шт
ST42-47 42 мм (NEMA 17) 0.36 Нм 1.2 А 10 мГн 1083 руб. / шт
ST57-56 57 мм (NEMA 23) 1.3 Нм 3.0 А 2.4 мГн 1545 руб. / шт
ST57-76 57 мм (NEMA 23) 1.8 Нм 3.0 А 3.8 мГн 2124 руб. / шт
ST57-100 57 мм (NEMA 23) 2.6 Нм 4.2 А 3.8 мГн 2778 руб. / шт
ST86-80 86 мм (NEMA 34) 4.4 Нм 5.6 А 3.0 мГн 4378 руб. / шт
ST86-114 86 мм (NEMA 34) 8.2 Нм 5.6 А 5.5 мГн 5722 руб. / шт
ST86-150 86 мм (NEMA 34) 12.4 Нм 5.6 А 9.2 мГн 8581 руб. / шт
ST110-121 110 мм (NEMA 42) 13 Нм 6.0 А 1.2 мГн 10544 руб. / шт
ST110-150 110 мм (NEMA 42) 21 Нм 6.5 А 13.5 мГн 13851 руб. / шт
Биполярные ШД с 2 валами
Биполярные ШД с 2 валами
Шаговые биполярные двигатели с двумя валами. Второй вал используется для установки энкодеров, рукояток для ручного управления станком, тормоза и т.п.

Мы предлагаем расширенный ассортимент шаговых двигателей с одним валом и двумя валами. Подробно...
Название
Фланец
Момент
Ток, I
Инд-ость
Цена Кол-во
ST57-56D 57 мм (NEMA 23) 1.3 Нм 3.0 А 2.4 мГн 1563 руб. / шт
ST57-76D 57 мм (NEMA 23) 1.8 Нм 3.0 А 3.8 мГн 2124 руб. / шт
ST57-100D 57 мм (NEMA 23) 2.6 Нм 4.2 А 3.8 мГн 2791 руб. / шт
ST86-80D 86 мм (NEMA 34) 4.4 Нм 5.6 А 3.0 мГн 4403 руб. / шт
ST86-114D 86 мм (NEMA 34) 8.2 Нм 5.6 А 5.5 мГн 5731 руб. / шт
ST86-150D 86 мм (NEMA 34) 12.4 Нм 5.6 А 9.2 мГн 8607 руб. / шт
ШД с тормозом
ШД с тормозом
Шаговые двигатели с электромагнитным тормозом. Основным назначением является блокировать вращение обратимых передач, таких как ШВП или реечная после отключения привода. Часто используется, чтобы сберечь станок от падения шпиндельного узла на рабочий стол при выключении станка. Подробно...
Название
Фланец
Момент
Ток, I
Инд-ость
Цена Кол-во
ST57-56B 57 мм (NEMA 23) 1.3 Нм 3.0 А 2.4 мГн 5580 руб. / шт
ST57-76B 57 мм (NEMA 23) 1.8 Нм 3.0 А 3.8 мГн 7362 руб. / шт
ST57-100B 57 мм (NEMA 23) 2.6 Нм 4.2 А 3.8 мГн 8247 руб. / шт
ST86-80B 86 мм (NEMA 34) 4.4 Нм 5.6 А 3.0 мГн 9467 руб. / шт
ST86-114B 86 мм (NEMA 34) 8.2 Нм 5.6 А 5.5 мГн 11597 руб. / шт
ST86-150B 86 мм (NEMA 34) 12.4 Нм 5.6 А 9.2 мГн 13255 руб. / шт
ШД с энкодером
ШД с энкодером
Шаговые двигатели с установленным на вал энкодером(датчиком угловых перемещений). Совместимы с большинством шаговых гибридных серводрайверов. Подробно...
Название
Фланец
Момент
Ток, I
Инд-ость
Цена Кол-во
ST57-56E 57 мм (NEMA 23) 1.3 Нм 3.0 А 2.4 мГн 3417 руб. / шт
ST57-76E 57 мм (NEMA 23) 1.8 Нм 3.0 А 3.8 мГн 3911 руб. / шт
ST57-100E 57 мм (NEMA 23) 2.6 Нм 4.2 А 3.8 мГн 4868 руб. / шт
ST86-80E 86 мм (NEMA 34) 4.4 Нм 5.6 А 3.0 мГн 6218 руб. / шт
ST86-114E 86 мм (NEMA 34) 8.2 Нм 5.6 А 5.5 мГн 7866 руб. / шт
ST86-150E 86 мм (NEMA 34) 12.4 Нм 5.6 А 9.2 мГн 10398 руб. / шт
ST110-150E 110 мм (NEMA 42) 21 Нм 6.5 А 13.5 мГн 16202 руб. / шт
Вопросы и ответы по шаговым двигателям

Какое сечение проводов лучше взять для подключения шаговых двигателей?
Для каждого типоразмера и модели свое. Вообще ШД не очень прожорливые двигатели по току, NEMA 17 без проблем работают по витой паре. А вообще в карточке товара для каждого мотора указаны рекомендуемые провода для его подключения.

Часто задаваемые вопросы по шаговым двигателям

шаговые двигатели для чпу купить

Шаговые двигатели

Шаговые двигатели широко используются в принтерах, автоматических инструментах, приводах дисководов, автомобильных приборных панелях и других приложениях, требующих высокой точности позиционирования. В DARXTON можно купить шаговый двигатель, самая выгоднаяцена на шаговые двигатели.

Шаговые двигатели: принцип работы и отличия от двигателей постоянного тока

Двигатели постоянного тока (ДПТ) с постоянными магнитами Lenze начинают работать сразу, как только к якорной обмотке будет приложено постоянное напряжение. Переключение направления тока через обмотки ротора осуществляется механическим коммутатором— коллектором. Постоянные магниты при этом расположены на статоре.

Шаговый двигатель (ШД) может быть рассмотрен как ДПТ без коллекторного узла. Обмотки ШД являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами. Обычно система мотор— контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Принято различать шаговые двигатели и серводвигатели. Принцип их действия во многом похож, и многие контроллеры могут работать с обоими типами. Основное отличие заключается в шаговом (дискретном) режиме работы шагового двигателя (nшагов на один оборот ротора) и плавности вращения синхронного двигателя. Серводвигатели требуют наличия в системе управления датчика обратной связи по скорости и/или положению, в качестве которого обычно используется резольвер или sin/cos энкодер. Шаговые двигатели преимущественно используются в системах без обратных связей, требующих небольших ускорений при движении. В то время как синхронные сервомоторы обычно используются в скоростных высокодинамичных системах.

Шаговые двигатели (ШД) делятся на две разновидности: двигатели с постоянными магнитами и двигатели с переменным магнитным сопротивлением (гибридные двигатели). Сточки зрения контроллера отличие между ними отсутствует. Двигатели с постоянными магнитами обычно имеют две независимые обмотки, у которых может присутствовать или отсутствовать срединный отвод (см.рис.1).


001.jpg

Биполярные шаговые двигатели с постоянными магнитами и гибридные двигатели сконструированы более просто, чем униполярные двигатели, обмотки в них не имеют центрального отвода (см. рис. 2).

002.jpg

За это упрощение приходится платить более сложным реверсированием полярности каждой пары полюсов мотора.

Шаговые двигатели имеют широкий диапазон угловых разрешений. Более грубые моторы обычно вращаются на 90° за шаг, в то время как прецизионные двигатели могут иметь разрешение 1,8° или 0,72° на шаг. Если контроллер позволяет, то возможно использование полушагового режима или режима с более мелким дроблением шага (микрошаговый режим), при этом на обмотки подаются дробные значения напряжений, зачастую формируемые при помощи ШИМ-модуляции.

Если в процессе управления используется возбуждение только одной обмотки в любой момент времени, то ротор будет поворачиваться на фиксированный угол, который будет удерживаться пока внешний момент не превысит момента удержания двигателя в точке равновесия.

Для правильного управления биполярным шаговым двигателем необходима электрическая схема, которая должна выполнять функции старта, стопа, реверса и изменения скорости. Шаговый двигатель транслирует последовательность цифровых переключений в движение. «Вращающееся» магнитное поле обеспечивается соответствующими переключениями напряжений на обмотках. Вслед за этим полем будет вращаться ротор, соединенный посредством редуктора с выходным валом двигателя.

Каждая серия содержит высокопроизводительные компоненты, отвечающие все возрастающим требованиям к характеристикам современных электронных компонентов.

Схема управления для биполярного шагового двигателя требует наличия мостовой схемы для каждой обмотки. Эта схема позволит независимо менять полярность напряжения на каждой обмотке.

На рисунке 3 показана последовательность управления для режима с единичным (полным) шагом.

003.jpg

На рисунке 4 показана последовательность для полушагового управления.

004.jpg

Максимальная скорость движения определяется исходя из физических возможностей шагового двигателя. При этом скорость регулируется путем изменения размера шага. Более крупные шаги соответствуют большей скорости движения.

В системах управления электроприводами для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя.

Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро-аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.

Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.

Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота. Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К). Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.

Шаговые двигатели различаются по конструктивным группам: активного типа (с постоянными магнитами), реактивного типа и индукторные.

005.jpg

купить шаговый двигатель

Шаговые синхронные двигатели активного типа

В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления.Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя.

Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.

При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления.

006.jpg

При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления.

007.jpg

Ротор у шагового двигателя активного типа представляет собой постоянный магнит, при числе пар полюсов больше 1,выполненный в виде «звездочки».

008.jpg

Число тактов KT системы управления называют количеством состояний коммутатора напериоде его работы T.Как видно из рисунков для симметричной системы управления KT=4, а для несимметричной KT=8.

В общем случае число тактов KT зависит от числа обмоток управления (фаз статора) mу и может быть посчитано по формуле:

KT = mуn1n2,

где: n1=1— при симметричной системе коммутации;

n1=2— при несимметричной системе коммутации;

n2=1— при однополярной коммутации;

n2=2— при двуполярной коммутации.

009.jpg

При однополярной коммутации ток в обмотках управления протекает водном направлении, а при двуполярной— в обеих. Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора. Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают. Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1). Для примера приведем двуполюсный трехфазный шаговый двигатель.

010.jpg

Двигатель с парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2 постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:

Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р=4…

6.Обычно величина шага ротора активных шаговых двигателей составляет десятки градусов.

шаговый двигатель купить цена

Реактивные шаговые двигатели

У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора.

011.jpg

При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.

Величина углового шага редукторного реактивного шагового двигателя определится выражением:

О±ш=360/КтZр

В выражении для KTвеличину n2 следует брать равной 1,т.к. изменение направления поля не влияет на положение ротора.

Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.

Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то— 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают. Такая конструкция сложнее в изготовлении и дороже однопакетной, и,кроме того, требует сложного коммутатора.

Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики

купить шаговый двигатель

Линейные шаговые синхронные двигатели

При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов.

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.

012.jpg

Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнито-провода ротора сдвинуты наполовину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС,которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления t/4.

О”Xш=tzt

где Kt— число тактов схемы управления.

Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.

шаговый двигатель цена

Режимы работы синхронного шагового двигателя

Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.

Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода xследующего импульса заданный угол вращения. Это значит, что вначале каждого шага угловая скорость вращения двигателя равна 0.

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла. Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

013.jpg

В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.

Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.

Предельная механическая характеристика— это зависимость максимального синхронизирующего момента от частоты управляющих импульсов.

014.jpg

Приемистость — это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления.

015.jpg

Приемистость падает с увеличением нагрузки.

купить шаговый двигатель

Шаговый двигатель - где купить, цена

изготовление деталей на заказ в воронеже Цена шаговых двигателей сильно разнится на рынке станкооборудования. Самое выгодное предложение только в DARXTON. Если Вы планируете купить шаговый двигатель и хотите уточнить сроки доставки или узнать другую информацию, звоните по телефону +7 (343) 3-180-180 или пишите на почту info@darxton.ru. Консультация бесплатна.