Для
Москва
работаем с 08:00 до 16:30, перерыв с 12:30 до 13:30
Каталог

Как понять электронику через гидравлику. Часть 2. Источник напряжения. Общий потенциал. Падение напряжения.



То, с чем обычно работают в электронике, что вы видите на схемах — это источник напряжения. Переменный ток оставим тоже пока на потом, будем говорить об источниках постоянного напряжения. Если говорить упрощенно, идеальный источник постоянного напряжения - это такая штука, которая всегда на своих выходах создает одну и ту же разность потенциалов(т.е. одно и то же напряжение). Всегда. Вне зависимости от того, что к нему подключено.


В методе гидравлических аналогий будем представлять ИИПН в виде хитрого насоса, который в выключенном состоянии — не пропускает ток жидкости, а во включенном — мгновенно начинает выдавать на выходе паспортное давление. Причем всегда выдает именно его — подключите вы туда решетку фильтра с большим сопротивлением, или с практически нулевым — насос подстроится и выдаст нужную разность давлений на входе и выходе, даже если надо разогнаться до первой космической.


Как именно представить насос — см. видео. Обратите внимание — модель такова, что он не только давит жидкость на своем входе, но и можно представлять таким образом, что он еще и втягивает жидкость на своем выходе! Иногда такой взгляд полезен для рассмотрения схемы.


Это идеальная модель. Конечно, в реальной жизни так не бывает, и если мы соединим клеммы батареи накоротко, то есть очень малым сопротивлением, там пойдет не бесконечный ток, а напряжение на выходе батареи при этом упадет. Происходит это потому, что батарея, как и реальный насос — имеют внутреннее сопротивление, и его иногда надо учитывать. Как именно учитывать — будет показано в видео, которое подытожит вводную серию роликов, пока просто запоминаем, что реальная модель источника напряжения — это идеальный источник плюс внутренний резистор, а источника давления — идеальный насос(выдающий на своих выходах всегда одно и то же давление) плюс внутренняя решетка фильтра.


Теперь такой момент


Обратите внимание, что мы постоянно в разговоре приравниваем слова «источник давления» и «источник разности давлений». Строго говоря, верно только второе, так как в нашей замкнутой гидравлической системе не бывает просто «давления», как и в электронике под напряжением всегда имеется в виду разность потенциалов(напряжение) между двумя какими-то точками. Но зачастую для упрощения, чтобы не упоминать постоянно о второй точке, в схеме находят некоторую точку G и когда говорят "давление(напряжение) в точке А" — всегда имеется в виду «разность давлений(разность потенциалов, напряжение) между точками G и A.


Такую общую точку называют общим потенциалом, обычно это минус источника питания.


При этом не забываем: потенциал(давление) во всех точек схемы, соединенных проводниками с нулевым сопротивлением(трубами) — всегда одинаков. То есть получается «точка G» на самом деле не точка, а весьма большая область. Логично, что если где-то внезапно давление в одной такой точке вырастет — то оно мгновенно же и выровняется, жидкость мгновенно перераспределится так, что давление везде станет одинаковым.


Этот прием(с общим потенциалом) позволяет упростить электронную схему визуально, но в гидравлических аналогиях наоборот, немного её усложняет. Поэтому мы его рассмотрим подробно только когда возникнет необходимость.


Под конец рассмотрим одну трудность, с которой могут столкнутся начинающие. Авторы текстов на электротехнические темы постоянно употребляют выражение «напряжение на элементе[резисторе, конденсаторе] такое-то». Так вот, с этим выражением все обращаются очень вольно. И может оно означать на самом деле аж 2 вещи


1) Напряжение на клеммах элемента, на его входе и выходе


2) Напряжение между входом(точке, дальней от общего потенциала) и общим потенциалом


Что конкретно имеется в виду — каждый раз вам придется догадываться из контекста, потому что всегда есть вероятность, что говорящий употребил эту фразу не в том смысле, что вы подумали поначалу.


Чтобы понять, почему это две столь разные вещи, необходимо четко усвоить понятие «падение напряжения на элементе». Оно простое, но иногда почему-то не усваивается начинающими.


Рассмотрим, откуда появляется напряжение(разность давлений) на входе и выходе элемента, допустим, решетки фильтра. Умозрительно это прекрасно понятно, так работают редукторы давления в гидравлике — они сопротивляются току жидкости, в результате перед ними давление выше, а после них — ниже. На них как бы «оседает» часть давления, они от него отделяют некоторую часть, которая не передается дальше. Если элемент оказывает сопротивление току жидкости — на нем остается часть давления. Вот эта разность давлений(потенциалов) на концах элемента, возникающая вследствие его сопротивления протекающему по нему току(наведенному внешним источником энергии) в электротехнике называется «падение напряжения на элементе». Какое именно падение — это зависит от элемента. Кратко - оно зависит от его сопротивления и протекающего через него тока! Если чуть точнее — то, в какой пропорции осядет напряжение на элементах цепи — зависит от пропорций величин их сопротивления потоку. А абсолютные числовые значения пропорциональны току.


А теперь можно представить себе цепочку из решеток фильтра. Естественно на каждом осядет часть давления. Чтобы это вычислить в цифрах, на каких сколько— можно обратиться за формулами в учебник, они простые, наша задача представить в уме, как именно это происходит.


Пока так, в следующий раз о конденсаторах. Тоже чисто умозрительно.


Если где-то оказалось непонятно - смотрите видео, там подробней, и со схемами.