Leadshine HBS86

Блок управления шаговым двигателем с обратной связью

Руководство по эксплуатации

Содержание

1. Технические характеристики	2
2. Основные сведения	
3. Начало работы	
3.1 Перед началом работы	
3.2 Коммутация дифференциальных входов	
3.3 Описание входов и выходов	
3.4 Подключение двигателей	
3.5 Выбор источника питания	
3.6 Выбор числа импульсов на оборот и тока фазы	
4. Настройка привода	
4.1 Подключение и запуск ПО	
4.2 Настройка параметров двигателя	
4.2 Настройка параметров драйвера	9
5. Защитные функции и индикация ошибок	

1. Технические характеристики

Параметр	Значение		
Ток фазы	0.35 6 А (8.2 А пиковый ток)		
Напряжение питания	3080 В постоянного тока		
Рекомендуемое напряжение питания	48-68 B		
Частота входного сигнала	до 200 кГц		
Деление шага	До 1:512		
Размеры модуля	151х139х48 мм		
Поддерживаемые сигналы	STEP/DIR		
	CW/CCW		
Bec	600 г		

2. Основные сведения

Блок управления HBS86 – цифровой серводрайвер(далее «драйвер) биполярного шагового двигателя на базе сигнального процессора. Драйвер предназначен для управления 2-хфазными и 4-хфазными шаговыми двигателями с квадратурными энкодерами. Благодаря использованию обратной связи по положению ротора, драйвер способен отслеживать пропуск шагов и устранять возникающее рассогласование по позиции, а также оптимальным образом регулировать ток обмоток на всем диапазоне скоростей, что позволяет значительно(до 30%) увеличить момент на высоких скоростях вращения и снизить нагрев двигателя при простое. Драйвер имеет следующие функциональные особенности:

- Поддержка обратной связи(closed-loop)
- Встроенные конфигурации для стандартных двигателей Leadshine
- Поддержка протоколов STEP/DIR и CW/CCW
- Оптоизолированные входы и выходы
- Автоматическое снижение тока удержания(настраиваемая степень снижения)
- Защита от превышения напряжения питания, превышения тока фаз, неправильного подключения фаз двигателя

3. Начало работы

3.1 Перед началом работы

Убедитесь, что модуль или упаковка не были повреждены при транспортировке.

3.2 Коммутация дифференциальных входов

При подключении сигналов соблюдайте следующие рекомендации

- Для подключения управляющих сигналов рекомендуется использовать кабель типа «витая пара»
- Входные и выходные кабели не должны располагаться слишком близко во избежание помех
- Все операции с кабелями производить только на выключенном устройстве!

Рис 2. Подключение привода к выходам типа «открытый коллектор»

Рис 2. Подключение к дифференциальным сигналам

3.3 Описание входов и выходов

Контакт	Описание
PUL+ PUL-	В режиме STEP/DIR – вход сигнала STEP(срабатывание по переднему или заднему фронту сигнала(см. п 4.8), в режиме CW/CCW – вход сигнала CW(срабатывание на обоих фронтах). В случае уровней напряжения 12 и 24 В требуется использовать токоограничивающий резистор(аналогично для входов ENA и DIR). Для стабильной обработки сигнала его длительность должна быть не менее 5 мкс
DIR+ DIR-	В режиме STEP/DIR — вход сигнала DIR(направление движения). Активный фронт задается согласно п. 4.8. В режиме CW/CCW — вход сигнала CCW(срабатывание на обоих фронтах). Для стабильной обработки сигнала его длительность должна быть не менее 5 мкс
ENA+ ENA-	Сигнал ENABLE активности драйвера. Высокий уровень(NPN) сигнала активирует драйвер, низкий деактивирует(запрещает управление двигателем).
PEND+ PEND-	Выход типа «открытый коллектор», активен, когда реальная позиция и заданная равны(т.е. когда рассогласование равно нулю). Активный уровень сигнала(выс./низк.) программируется через ПО ProTuner. Напряжение 24 В, потребляемый ток до 20 мА.
ALM+ ALM -	Выход типа «открытый коллектор», активируется при срабатывании следующих защит драйвера: превышение напряжения, превышение тока, превышение порога рассогласования по позиции. или аварийной оста-

новке вала. Активный уровень сигнала(выс./низк.) программируется через ПО ProTuner. Напряжение 24 В, потребляемый ток до 20 мА.

3.4 Подключение двигателей

Драйвер может управлять любыми 2-хфазными и 4-хфазными гибридными шаговыми двигателями. Рекомендуется использовать биполярные гибридные двигатели с 4 выводами(схема A).

Рис 3. Возможные схемы подключения обмоток шаговых двигателей

Схема A соответствует подключению шаговых двигателей с 4 выводами Двигатели с 6 выводами подключаются по схеме Б или В. Двигатели с 8 выводами – по схемам Г или Д.

ВНИМАНИЕ! Запрещается подключать и отключать какие-либо кабели на включенном драйвере! Обязательно предварительно обесточьте систему.

3.5 Выбор источника питания

Выбор источника питания влияет на конечные параметры движения шагового двигателя. В общем случае, повышение напряжение питания увеличивает максимальную скорость(за счет увеличения момента на высоких скоростях вращения)и нагрев двигателя и его вибрации на низких частотах, а увеличение тока фазы соответствует увеличению общего крутящего момента и нагрева двигателя. Если не ставится требований по достижению высоких скоростей вращения шагового двигателя, рекомендуется использовать низкие питающие напряжения для уменьшения нагрева двигателя, снижения шума и повышения надежности системы.

Для питания модуля можно использовать как линейные, так и импульсные источники питания. Линейные ИП на основе трансформаторов более предпочтительны. В случае использования импульсных источников питания

настоятельно рекомендуется использовать источник питания с запасом по току.

В случае подключения нескольких драйверов к одному источнику питания следует использовать схему питающей шины «звезда». Не подключайте один драйвер к клеммам питания другого драйвера!

Положительный контакт источника питания подключается к клемме Vcc, отрицательный – к GND.

Оптимальное напряжение питания для данного драйвера 48-68 В.

3.6 Выбор числа импульсов на оборот и тока фазы

Число импульсов STEP, требуемых для полного оборота вала и ток фазы двигателя являются программируемыми параметрами. Число импульсов/оборот устанавливается DIP-переключателями SW1, SW2, SW3, SW4 согласно информации на корпусе устройства. Если переключатели стоят в положении Default, данный параметр задается в ПО **ProTuner**.

Микрошаг, 1/х	SW1	SW2	SW3	SW4
DEFAULT	ON	ON	ON	ON
4	OFF	ON	ON	ON
8	ON	OFF	ON	ON
16	OFF	OFF	ON	ON
32	ON	ON	OFF	ON
64	OFF	ON	OFF	ON
128	ON	OFF	OFF	ON
256	OFF	OFF	OFF	ON
5	ON	ON	ON	OFF
10	OFF	ON	ON	OFF
20	ON	OFF	ON	OFF
25	OFF	OFF	ON	OFF
40	ON	ON	OFF	OFF
50	OFF	ON	OFF	OFF
100	ON	OFF	OFF	OFF
200	OFF	OFF	OFF	ON

Выбор тока фазы осуществляется исходя из требований к крутящему моменту и нагреву двигателя. В связи с тем, что последовательное или параллельное подключение обмоток 8-выводных моторов существенным образом меняют характеристики цепи, выбор тока также должен обязательно учитывать вид двигателя и схему подключения обмоток. Ток фазы двигателя устанав-

ливается с помощью программного обеспечения драйвера, и отсчитывается относительно тока фазы стандартных моделей Leadshine.

SW6 в положении **ON -ток фазы 6 A**

SW6 в положении **OFF – ток фазы 5.5 A**

Примечание. Из-за индуктивности обмоток реальный ток в обмотках может отличаться от установленного значения.

4. Настройка привода

4.1 Подключение и запуск ПО

Установите ПО ProTuner на ПК(для установки требуются права администратора)

Подключите двигатель (фазы и энкодер) к драйверу согласно инструкции, затем подключите привод кабелем Leadshine RS232-RJ12 к COM-порту компьютера, на котором установлено ПО, и подайте напряжение 24-80 В на привод, после чего запустите ПО и выберите подходящий порт из списка:

После установления связи с приводом появится главное окно настройки:

4.2 Настройка параметров двигателя

Откройте в пункте главного меню Drive окно настроек Motor Settings

Установите в нем требуемые параметры -

- 1) число импульсов на оборот(действительно для случая, когда SW1-SW4 стоят в положении Default)
- 2) максимальное рассогласование, после которого привод будет остановлен с ошибкой
- 3) Разрешение установленного энкодера(в импульсах на оборот)

Нажмите ОК и закройте окно после сохранения параметров.

4.2 Настройка параметров драйвера

4.2.1 Настройка тока фазы

Закройте окно **Motion test** и в пункте главного меню **Tools** выберите **Drive parameters** и считайте текущие настройки нажатием кнопки Read.

Выберите номинальный ток фазы путем подстройки параметров

- 1) Holding current ток удержания. Задается в % от номинального, который в свою очередь задается положением SW6(см. п.3.6).
- 2) Open-loop current ток фазы двигателя без энкодера(при работе в режиме стандартного драйвера ШД)
- 3) Close-loop current ток фазы двигателя с энкодером

SW6 в положении ON - 100% соответствуют току фазы в 5.5 A SW6 в положении OFF - 100% соответствуют току фазы в 6 A. Таким образом, для установки тока фазы в 4.2 A необходимо установить SW6 в ON, и задать Close-loop current равным 77%

После настройки параметров нажмите **Download** для сохранения параметров в энергонезависимую память.

4.2.3 Настройка ПИ-регулятора уровня тока

В окне **Current loop / motion test** на вкладке Current loop следует настроить ПИ-регулятор уровня тока обмоток таким образом, чтобы профиль тока был максимально приближен к прямоугольнику. Test value должен быть равен номинальному току обмоток двигателя.

4.2.4 Настройка ПИД-регулятора позиции

Настройка производится в окне **Drive parameters**, проверка результатов производится в окне **Current loop / motion test** на вкладке Motion test(более удачное сочетание параметров приводит к меньшим значениям по оси ординат).

Настраиваются следующие параметры:

- 1) Position loop Kp пропорциональный коэффициент. Малые значения дают стабильную систему, малую жесткость и большую погрешность при нагрузках. Большое значение делает систему жестче, более склонной к самоколебаниям.
- 2) Position loop Ki интегральный(сглаживающий) коэффициент. Чем больше значение, тем больше инерция системы
- 3) Position loop Kd дифференциальный коэффициент.

4) Position loop Kff- коэффициент упреждения. Увеличивает скорость реакции системы

5. Защитные функции и индикация ошибок

Для индикации срабатывания защиты драйверы служит красный диод. В случае возникновения нескольких ошибок одновременно будет индицирована наиболее приоритетная.

Ошибка индицируется количеством циклов вкл-выкл. в период 5 сек. Ниже перечислены индикация ошибок в порядке убывания приоритета:

- 1 раз ток превысил допустимый предел
- 2 раза напряжение питание превысило допустимый предел
- 5 раз рассогласование достигло предела