Leadshine EM806

Блок управления шаговым двигателем

Руководство по эксплуатации

Содержание

_eadshine EM806	
Блок управления шаговым двигателем	
1. Технические характеристики	
2. Основные сведения	
3. Начало работы	3
3.1 Перед началом работы	
3.2 Коммутация дифференциальных входов	3
3.3 Описание входов и выходов	5
3.4 Подключение двигателей	6
3.5 Выбор источника питания	6
3.6 Выбор микрошага и тока фазы	7
4.7 Автоматическая подстройка драйвера под двигатель	8
4.8 Выбор предустановленной конфигурации	8
4.9 Защитные функции и индикация ошибок	
4.10 Типичные проблемы и их причины	

DARXTON © 2012

1. Технические характеристики

Параметр	Значение
Ток фазы	0.35 6 А (8.2 А пиковый ток)
Напряжение питания	2480 В постоянного тока
Рекомендуемое напряжение питания	68 B
Частота входного сигнала	до 200 кГц
Деление шага	До 1:512
Размеры модуля	151х139х48 мм
Поддерживаемые сигналы	STEP/DIR
	CW/CCW
Bec	600 г

2. Основные сведения

Блок управления биполярным шаговым двигателем EM806 – цифровой драйвер на основе сигнального процессора с применением современных управляющих алгоритмов. Благодаря инновационным технологиям, в EM806 удалось достичь высочайшей плавности движения вала шагового двигателя и крутящего момента. В EM806 используются наиболее передовые алгоритмы управления током обмотки и подавления среднечастотного резонанса.

Драйвер предназначен для управления 2-хфазными и 4-хфазными шаговыми двигателями, и имеет следующие функциональные особенности:

- Система подавления резонанса шагового двигателя
- Алгоритм определения остановки вала двигателя(«срыва»)
- Функция автоматической подстройки драйвера под двигатель
- Микрошаг до 1:512
- Встроенные конфигурации для 16 видов двигателей
- Поддержка протоколов STEP/DIR и CW/CCW
- Оптоизолированные входы и выходы
- Автоматическое снижение тока удержания(настраиваемая степень снижения)
- Защита от превышения напряжения питания, превышения тока фаз, неправильного подключения фаз двигателя

DARXTON © 2012 www.darxton.ru

3. Начало работы

3.1 Перед началом работы

Убедитесь, что модуль или упаковка не были повреждены при транспортировке.

3.2 Коммутация дифференциальных входов

При подключении сигналов соблюдайте следующие рекомендации

- Для подключения управляющих сигналов рекомендуется использовать кабель типа «витая пара»
- Входные и выходные кабели не должны располагаться слишком близко во избежание помех
- Все операции с кабелями производить только на выключенном устройстве!

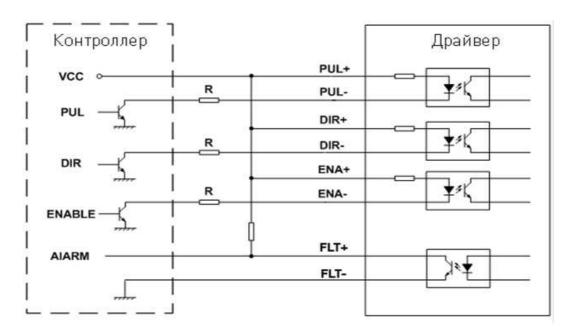


Рис. 1 Подключение к выходам «открытый коллектор»

DARXTON © 2012 www.darxton.ru

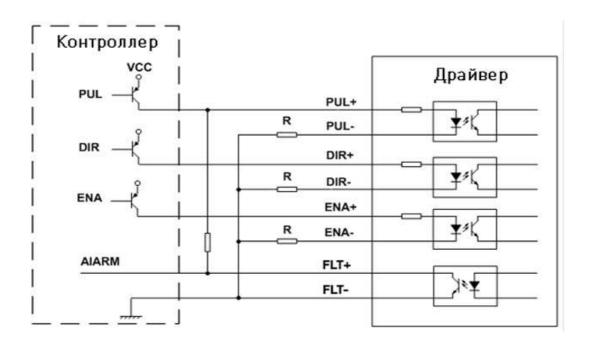


Рис 2. Подключение с общим катодом

Выбор токоограничивающего резистора зависит от уровня напряжения сигналов: при VCC=5 В резистор не используется, при VCC = 12 В используется резистор R=1KOM, при VCC = 24 В используется R=2KOM.

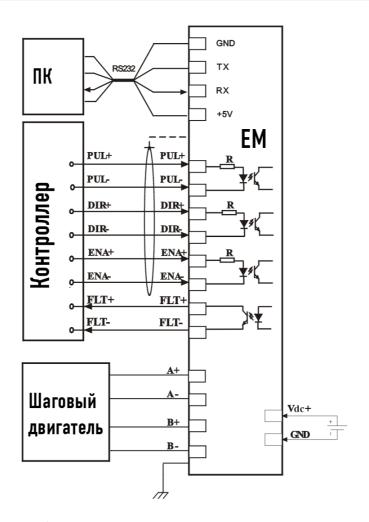


Рис 3. Подключение дифференциальных сигналов

3.3 Описание входов и выходов

Контакт	Описание
PUL+ PUL-	В режиме STEP/DIR – вход сигнала STEP(срабатывание по переднему или заднему фронту сигнала(см. п 4.8), в режиме CW/CCW – вход сигнала CW(срабатывание на обоих фронтах). В случае уровней напряжения 12 и 24 В требуется использовать токоограничивающий резистор(аналогично для входов ENA и DIR). Для стабильной обработки сигнала его длительность должна быть не менее 5 мкс
DIR+ DIR-	В режиме STEP/DIR — вход сигнала DIR(направление движения). Активный фронт задается согласно п. 4.8. В режиме CW/CCW — вход сигнала CCW(срабатывание на обоих фронтах). Для стабильной обработки сигнала его длительность должна быть не менее 5 мкс
FLT+ FLT-	Выход типа «открытый коллектор», активируется при срабатывании защиты драйвера или аварийной остановке вала. Активный уровень сигнала(выс./низк.) программируется через ПО ProTuner. Напряжение 24 В, ток до 20 мА.

DARXTON © 2012 www.darxton.ru

ENA+	Сигнал ENABLE активности драйвера. Высокий уровень(NPN) сигнала ак-
ENA-	тивирует драйвер, низкий деактивирует(запрещает управление двигате-
	лем).

3.4 Подключение двигателей

Драйвер может управлять любыми 2-хфазными и 4-хфазными гибридными шаговыми двигателями. Рекомендуется использовать биполярные гибридные двигатели с 4 выводами(схема A).

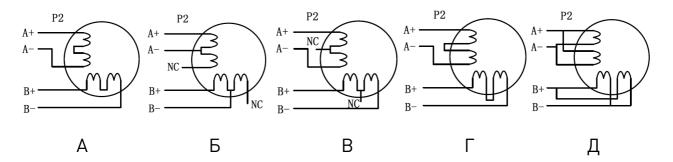


Рис 3. Возможные схемы подключения обмоток шаговых двигателей

Схема A соответствует подключению шаговых двигателей с 4 выводами Двигатели с 6 выводами подключаются по схеме Б или В. Двигатели с 8 выводами – по схемам Г или Д.

ВНИМАНИЕ! Запрещается подключать и отключать какие-либо кабели на включенном драйвере! Обязательно предварительно обесточьте систему.

3.5 Выбор источника питания

Выбор источника питания влияет на конечные параметры движения шагового двигателя. В общем случае, повышение напряжение питания увеличивает максимальную скорость (за счет увеличения момента на высоких скоростях вращения) и нагрев двигателя и его вибрации на низких частотах, а увеличение тока фазы соответствует увеличению общего крутящего момента и нагрева двигателя. Если не ставится требований по достижению высоких скоростей вращения шагового двигателя, рекомендуется использовать низкие питающие напряжения для уменьшения нагрева двигателя, снижения шума и повышения надежности системы.

Для питания модуля можно использовать как линейные, так и импульсные источники питания. Линейные ИП на основе трансформаторов более пред-

почтительны. В случае использования импульсных источников питания настоятельно рекомендуется использовать источник питания с запасом по току.

В случае подключения нескольких драйверов к одному источнику питания следует использовать схему питающей шины «звезда». Не подключайте один драйвер к клеммам питания другого драйвера!

Положительный контакт источника питания подключается к клемме Vcc, отрицательный – к GND.

Оптимальное напряжение питания для данного драйвера 48-55 В.

3.6 Выбор микрошага и тока фазы

Микрошаг и ток фазы являются программируемыми параметрами. Микрошаговый режим устанавливается DIP-переключателями SW5, SW6, SW7, SW8 согласно информации на корпусе устройства. Выбор тока фазы осуществляется исходя из требований к крутящему моменту и нагреву двигателя. В связи с тем, что последовательное или параллельное подключение обмоток 8выводных моторов существенным образом меняют характеристики цепи, выбор тока также должен обязательно учитывать вид двигателя и схему обмоток. Ток подключения фазы двигателя устанавливается переключателями SW1, SW2, SW3 согласно таблице на корпусе устройства, или с помощью программного обеспечения драйвера(если переключатели установлены в положение DEFAULT).


Ток	SW1	SW2	SW3
DEFAULT	ON	ON	ON
1.93 A	OFF	ON	ON
2.57 A	ON	OFF	ON
3.29 A	OFF	OFF	ON
3.93 A	ON	ON	OFF
4.57 A	OFF	ON	OFF
5.21 A	ON	OFF	OFF
5.86 A	OFF	OFF	OFF

Примечание. Из-за индуктивности обмоток реальный ток в обмотках может отличаться от установленного значения.

Снижение тока в момент удержания настраивается переключателем SW4: положение OFF - ток в момент удержания не снижается, положение ON - параметры тока удержания(процент снижения и время) задаются в ПО драйвера ProTuner. По умолчанию ток удержания составляет 50% от установленного тока фазы и снижается до этого значения через 2 секунды после последнего импульса STEP.

4.7 Автоматическая подстройка драйвера под двигатель

Для автоматической подстройки драйвера под параметры обмоток двигателя на выключенном драйвере переместите SW4 в положение OFF, подключите двигатель, включите драйвер, и в течение 2 секунд дважды смените положение переключателя OFF-ON-OFF, или ON-OFF-ON, например:

4.8 Выбор предустановленной конфигурации

Выбор предустановленных конфигураций Leadshine задается переключателем **Motor SEL** в положениях 0-F. Выбор наилучшей конфигурации рекомендуется сделать эмпирическим способом. Для настройки драйвера вручную установите переключатель в одно из положений **Custom**

4.9 Защитные функции и индикация ошибок

Для индикации срабатывания защиты драйверы служит красный диод. В случае возникновения нескольких ошибок одновременно будет индицирована наиболее приоритетная.

Ошибка индицируется количеством циклов вкл-выкл. в период 5 сек. Ниже перечислены индикация ошибок в порядке убывания приоритета:

1 раз – ток превысил допустимый предел

2 раза – напряжение питание превысило допустимый предел (70 В)

5 раз – произошла аварийная остановка вала двигателя(«срыв»)

4.10 Типичные проблемы и их причины

Проблема	Возможная причина	
Моргает зеленый диод	Это свидетельство нормальной работы драйвера, не требует действий!	
Двигатель не вращается	Не подключено питание Неверные установки микрошага Неверные установки тока Сработала защита устройства Подключен, но отсутствует сигнал ENABLE	
Двигатель вращается нестабильно	Управляющий сигнал слаб или с помехами Дребезг на входных контактах Двигатель подключен неверно Проблемы с обмотками двигателя(КЗ) Выбранный ток фазы или напряжение питания слишком малы	
Ошибка «аварийный останов вала» при разгоне		
Двигатель или драйвер перегреваются	Плохое охлаждение Установлен слишком высокий ток фазы Используется слишком высокое для данной модели двигателя напряжение питания Не используется функция снижения тока при удержании	